返回
类型 应用研究 预答辩日期 2018-04-09
开始(开题)日期 2014-11-13 论文结束日期 2018-01-21
地点 逸夫科技馆三楼小会议室 论文选题来源 国家自然科学基金项目     论文字数 5.9 (万字)
题目 多尺度功能结构的制备研究
主题词 多尺度,胶体晶体,自组装,电流体动力喷印, 双光子聚合
摘要 近年来,微米至纳米尺度的结构赋予传统材料在物理、化学和生物方面新的活力。这些性质不仅来源于物质尺寸降低后的尺度效应,还可能来源于多尺度结构的组合效应、结构本身的几何形貌、单一结构的周期性排列和材料或者结构的响应性。因此,基于多尺度功能材料的研究对基础研究和实际应用都有着重要贡献。自上而下和自下而上的微纳加工方法已经应用于微米尺度、亚微米尺度和纳米尺度特定结构的加工。然而实际研究中需要不同尺度的结构组合在一起,现有加工手段尚不能满足这一需求。本论文以多尺度功能结构的制备为目标,开展了基于自组装技术的亚微米尺度有序结构的制备,基于电流体动力喷印技术的微米尺度结构色图案的制备和基于双光子聚合技术的跨尺度三维结构制备。具体研究内容如下: (1) 利用胶体晶体自组装技术构建亚微米尺度周期性有序结构。将亚微米尺度的二氧化硅粒子与光敏性水凝胶结合,通过紫外聚合制备非紧密堆积型光子晶体结构。水凝胶网格锁定了胶体粒子的周期性空间分布,赋予胶体晶体水凝胶薄膜光子禁带的性质;水凝胶网格的形变可以用来调节光子晶体结构的相邻晶面距离,实现其光子禁带可调节。根据胶体晶体水凝胶薄膜的厚度与其光子禁带之间的线性对应关系,利用均匀压力和阶梯压力在时间和空间上实现光子禁带的连续分布,并在可调谐布拉格光栅和衍射光栅中得到应用。该工作利用同一种亚微米尺度的胶体粒子实现了覆盖可见光区域的光子禁带。 (2) 结合胶体晶体自组装技术和电流体动力喷印技术构建亚微米尺度的有序结构和微米尺度的结构色图案。利用胶体晶体自组装制备亚微米尺度光子晶体结构并获得结构色;利用电流体动力喷印出的离散液滴或者连续纤维限制胶体粒子的自组装区域,得到微米尺度的点状、环状和线段状结构色单元。结构色单元的尺寸及形貌受喷头内径、电压信号参数和接收基底浸润性的控制。内部亚微米尺度的光子晶体结构则受不同墨水溶剂及自组装过程的影响,可以形成紧密堆积型周期性有序结构和无定型光子晶体结构。该工作为利用胶体粒子的可控组装实现微米尺度图案化提供了新方法。 (3) 利用双光子聚合激光直写加工技术构建具有纳米、亚微米和微米尺度的三维结构。通过曝光量的累加计算描绘出光刻胶中自由基的空间分布,模拟出激光能量、加工速度以及加工轨迹对于聚合结构的影响,以此指导目标结构对应的加工轨迹设计。针对孔道结构,控制环形加工轨迹的直径实现纳米尺度和亚微米尺度的孔道开口;利用不同直径的环形结构沿光轴方向堆叠实现亚微米尺度多种复杂的孔道形貌;发挥双光子聚合的直写加工能力将纳米和亚微米尺度的孔道结构集成到微米尺度结构的指定位置。该工作实现了微纳尺度下三维结构的直写加工。
英文题目 Fabrication of Multiscale Functional Structures
英文主题词 Multiscale Functional Structures, Colloidal Crystal, Self-Assembly, Electrohydrodynamic Jet Printing, Two-Photon Polymerization
英文摘要 Recently, microstructures and nanostructures have promoted to the research of traditional materials in physics, chemistry, and biology. New properties of these functional structures arise from not only the size effects of the small scales but also the composite effects of multiple scales from micrometer to nanometer, the geometric shapes of the structures, periodic arrays of uniform structures, and the responsive changes of shapes to external stimulis. Thus, multiscale functional structures show positive effects on scientific research and real applications. Both these top-down and bottom-up fabrication methods have been widely applied into specific structures in micrometer, submicron, and nanometer scales. However, it is still difficult to integrate multiple structures with different scales into one device with these existing methods. Thus, we focus on the intergration of multiscale structures from micrometer to nanometer scale. Self-assembly of colloidal crystals, electrohydrodynamic jet (E-jet) printing with colloidal inks, and two-photon polymerization (TPP) are investigated to achieve ordered photonic crystal (PC) structures in submicron scales, structural color patterns in micrometer scales, and 3D devices with multiscale structures. The detail works are as follow: (1) Ordered structures with submicron scales can be achieved by self-assembly of colloidal particles. A colloidal crystal hydrogel film was realized with the polymerization of photosensitive hydrogels and the embedded non-close-packed silica particles. The hydrogel network was used to lock the periodic ordered structures, leading to a photonic band gap (PBG). And the PBG can be tuned by the thickness of the hydrogel film and the interplanar distance of the neighbouring diffracting planes. Based on the linear relationship between the thickness of the hydrogel film and its PBG, continuously varying PBGs in time and space could be achievd by the apllied stress, which have been used in tunable fiber Bragg gratings and diffraction gratings, respectively. The chapter demonstrated the photonic band gaps of ordered submicron structures could be achieved by monodisperse colloidal particles with one size. (2) Structural color patterns with micrometer scales and periodic ordered structures with submicron scales were fabricated by utilizing E-jet printing and self-assembly of colloidal crystals. The self-assembly of colloidal crystals resulted in the PC structure and structural color in each unit and the E-jet printing provided discrete droplets and continuous fibers to achieve dots, rings, and lines. The final size and shape of each PC unit were controlled by the nozzle, the applied voltage signal and wettability of the substrate. The embedded colloidal particles self-aeembled into close-packed periodic ordered structures and amouphous PC structures depending on the solvent and the assemblying process. This work solved the issue of non-templated self-assembly of colloidal particles in controllable micrometer areas. (3) 3D structures with micrometer, submicron, and nanometer scales can be directly printed by TPP. Based on the calculation of the distribution of the exposure dose around the fabrication path, the effects on the laser power, the fabrication speed and the scanning path on the polymerization voxels were used to guide the design of complex geographic structures. For solid-state pores, the dimater of the scanning path was used to generate narrow opennings in nanometer and submicron scales. The generated pore structures were stacked to form a channel with desired complex shapes. Moreover, TPP offered the possibility of integrating these structures into deveices with micrometer scales. This chapter demonstrated the direct printing capacity of TPP for arbitrary 3D structures.
学术讨论
主办单位时间地点报告人报告主题
生物电子学国家重点实验室仿生材料与器件实验室 2014.01.04 逸夫科技馆三楼会议室 丁海波 Photonic Colloidal Crystal for Spectroscopic Analysis
生物电子学国家重点实验室仿生材料与器件实验室 2014.06.21 逸夫科技馆三楼会议室 丁海波 High-resolution electrohydrodynamic jet printing
生物电子学国家重点实验室仿生材料与器件实验室 2014.11.14 逸夫科技馆三楼会议室 丁海波 Fabrication of Ordered Micro-/Nano- Structures based on Electrohydrodynamic Jet Printing
生物电子学国家重点实验室仿生材料与器件实验室 2012.02.25 逸夫科技馆三楼会议室 丁海波 光纤气体传感器
生物电子学国家重点实验室仿生材料与器件实验室 2013.03.26 逸夫科技馆三楼会议室 丁海波 Dynamic Filtering of Optical Fibers with Colloidal Crystals
生物电子学国家重点实验室仿生材料与器件实验室 2013.10.25 逸夫科技馆三楼会议室 丁海波 Responsive Colloidal Crystal for Spectrometer Grating
生物电子学国家重点实验室仿生材料与器件实验室 2015.06.13 逸夫科技馆三楼会议室 丁海波 Fabrication of Microstructures based on Electrohydrodynamic Jet Printing
生物电子学国家重点实验室仿生材料与器件实验室 2017.11.27 逸夫科技馆三楼会议室 丁海波 Microstructures Fabricated by Two-Photon Polymerization
     
学术会议
会议名称时间地点本人报告本人报告题目
IMSE2014 2014.11.02 南京 Responsive Colloidal Crystals for Diffraction Gratings
FNC-2015 2015.06.06 北京 Diffraction Gratings Based on Responsive Colloidal Crystals
FiO/LS 2017 2017.09.19 华盛顿 Two-Photon Polymerization of Biocompatible Hydrogels
SIEMME’ 20 2014.09.22 成都 Spectrometer Gratings Based on Responsive Colloidal Crystals
     
代表作
论文名称
Tunable Fiber Bragg Grating based on Responsive Photonic Crystals
Responsive Colloidal Crystal for Spectrometer Grating
Free-Standing Photonic Crystal Films with Gradient Structural Colors
Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals
 
答辩委员会组成信息
姓名职称导师类别工作单位是否主席备注
肖守军 正高 教授 博导 南京大学化学化工学院
徐春祥 正高 教授 博导 东南大学生物科学与医学工程学院
陈苏 正高 教授 博导 南京工业大学化学化工学院
邱腾 正高 教授 博导 东南大学物理学院
付德刚 正高 教授 博导 东南大学生物科学与医学工程学院
      
答辩秘书信息
姓名职称工作单位备注
魏红梅 副高 高级实验师 东南大学生物科学与医学工程学院