返回
类型 基础研究 预答辩日期 2018-05-14
开始(开题)日期 2013-12-02 论文结束日期 2018-01-18
地点 东南大学玄武岩纤维国家工程研究中心9楼会议室 论文选题来源 973、863项目     论文字数 8 (万字)
题目 连续玄武岩纤维的高强度化研究
主题词 连续玄武岩纤维,矿物组分,拉伸强度,粘度,析晶上限温度
摘要 连续玄武岩纤维是以火山岩为原料经1500℃高温熔融后快速拉制而成的连续纤维,其外观为金褐色,属于非金属的无机纤维,被称为21 世纪无污染的“绿色工业原材料”。这里,连续玄武岩纤维中的“玄武岩”是玄武岩、安山岩、粒玄岩、辉石岩、安山玄武岩等可用于生产连续纤维的火山岩的通称。由于连续玄武岩纤维具有高的力学性能及耐久性,它被认为是我国四大高技术纤维(碳纤 维、芳纶纤维、高分子量聚乙烯和连续玄武岩纤维)之一。虽然起步晚于其它三种高技术纤维,但由于其高的性价比和广泛的应用领域,连续玄武岩纤维被寄予厚望。近年来,连续玄武岩纤维的生产技术和应用技术得到了快速发展。然而,由于连续玄武岩纤维生产中存在诸多技术瓶颈,导致目前存在产品性能离散型大、产量规模小、生产成本高、生产装备落后等制约连续玄武岩纤维产业快速发展的诸多问题。再者,随着风力发电、汽车、飞机、船艇、土木建筑等产业的快速发展,对高性能纤维复合材料的需求日渐强劲,进而要求有耐腐蚀性的高强度连续玄武岩纤维的稳定来源。 针对目前连续玄武岩纤维存在的质量和性能不稳定问题、以及应用领域对高强度连续玄武岩纤维的需求,本文通过对玄武岩原料熔制机理和矿石原料多元均配原理的创新研究,建立了提高连续玄武岩纤维的稳定性和强度的技术方法及理论。本文的主要研究内容和创新点如下: (1)首先通过高温显微图像分析法、DSC光谱分析法和XRD衍射分析法研究分析了安山岩、安山玄武岩、拉斑玄武岩和碱性玄武岩(以下通称玄武岩)矿石的熔化过程,并通过矿物相图进一步解释了玄武岩矿石的熔化过程。全面分析了玄武岩的化学成分和矿物组分对熔化温度(熔制过程)的影响和作用。建立了玄武岩玻璃的加热反应及熔制过程,提出了玄武岩矿石的熔制机理。形成了连续玄武岩纤维稳定化和高性能化生产技术的重要理论基础。同时,基于玄武岩的矿物组分特性、熔制过程和熔制机理,分析了影响玄武岩玻璃熔体均质化的因素,提出了通过筛选不含难熔矿物组分和合理的熔制制度来提高玄武岩熔体的均质性。从源头上解决了连续玄武岩纤维的稳定性问题。 (2)玄武岩是天然矿石,某一地区的成分是固定不变的。它不可能同玻璃配合料一样,通过调整玻璃配合料中某种化学成分的种类或含量来满足纤维的性能要求。然而,不同地区玄武岩,其成分各不相同。自然界中,必然存在满足不同性能要求的天然单一的玄武岩矿石原料。本文首先以天然单一的玄武岩矿石为研究对象,以期发现影响天然连续玄武岩纤维强度的因素。本文研究了安山岩、安山玄武岩、拉斑玄武岩的化学成分和矿物组分对拉伸强度、熔制性能(熔化温度和粘度)和纤维成型性能(析晶温度和纤维成型温度范围)的影响,以及熔制性能(熔化温度和粘度)和纤维成型性能(析晶温度和纤维成型温度范围)对拉伸强度的影响。结果表明:在玄武岩熔体均质的情况下,连续玄武岩纤维的拉伸强度由化学成分决定,主要是由SiO2含量决定。玄武岩的矿物组分决定了玄武岩的熔制性能和纤维成型性能,玄武岩的熔制性能和纤维成型性能决定了玄武岩玻璃的均质性,从而影响玄武岩纤维的拉伸强度。本文首次揭示了玄武岩的矿物组分在玄武岩纤维生产过程中的作用。 研究还发现:当玄武岩(主要是玄武安山岩和拉斑玄武岩)的SiO2含量为50%-57%,纤维单丝的拉伸强度高,最高达3370.46MPa。此时,玄武岩易于熔化和均质,其半球点温度(熔融温度)在1280-1470℃,1300℃时的粘度250-650 dPa﹒s,析晶上限温度为1240-1290℃,纤维成型温度范围一般为-90-20℃。本文的研究为选择生产高强度连续玄武岩纤维的玄武岩矿石提供了明确的技术思路。 (3)矿石的多元均配技术是对同一地区不同矿点、不同矿区(地区)的矿石通过破粉碎、堆场预均化、粒度及分布控制等方法,以实现天然玄武岩矿石原料的成分稳定和性能的提高。本文对不同成分的两种玄武岩进行混合,以期得到高强度连续玄武岩纤维。本文在低SiO2含量的玄武岩中引入高SiO2含量的玄武岩形成玄武岩混合料,研究了玄武岩混合料的拉伸强度、熔制性能(熔化温度和粘度)和纤维成型性能(析晶温度和纤维成型温度范围),以及它们之间的相互关系。与天然单一的连续玄武岩纤维相比,不论玄武岩混合料中SiO2含量大于、接近或小于天然单组份玄武岩的SiO2含量时,玄武岩混合料纤维的拉伸强度都大于天然单组份玄武岩纤维的拉伸强度。而且,玄武岩混合料的玄武岩熔制性能和纤维成型性能的得到了优化。这是由于玄武岩混合料的矿物组分的变化促进了玄武岩熔制性能和纤维成型性能的优化,进而促进了玄武岩玻璃的均质化,从而提高了连续玄武岩纤维的拉伸强度。 (4)连续玄武岩纤维的强度与化学成分、矿物组分、熔制性能(熔化温度和粘度)和纤维成型性能(析晶温度和纤维成型温度范围)都有关系。其中,化学成分和矿物组分是影响强度的内因,熔制性能(熔化温度和粘度)和纤维成型性能(析晶温度和纤维成型温度范围)是影响强度的外因。当玄武岩玻璃熔体在足够均质和均化的情况下,连续性连续玄武岩纤维的强度取决于化学成分和矿物组分;反之,连续性连续玄武岩纤维的强度取决于矿物组分,因为熔制性能(熔化温度和粘度)和纤维成型性能(析晶温度和纤维成型温度范围)是由矿物组分决定的,熔制性能(熔化温度和粘度)和纤维成型性能(析晶温度和纤维成型温度范围)又决定玄武岩玻璃熔体的均质性好坏。 从本文的研究来看:不论是天然单一连续玄武岩纤维,还是玄武岩混合料纤维,其单丝拉伸强最高时SiO2含量为50%-57%,玄武岩玻璃熔体的均质性好,此时拉伸强度由化学成份和矿物组分决定。当SiO2含量>57%,玄武岩玻璃熔体的均质性不好,连续玄武岩纤维的拉伸强度主要由熔制性能决定;当SiO2含量<50%,玄武岩玻璃的均质性不好,连续玄武岩纤维的单丝拉伸强度主要由纤维成形性能决定。
英文题目 Study on the High Strength and Perfrece Continuous Basalt Fiber
英文主题词 Continuous basalt fiber, Mineral component, Tensile strength, Viscosity, Crystallization
英文摘要 The continuous basalt fiber (CBF), as a non-metal inorganic material, is manufactured by drawing the melted volcanic rocks in the temperature of about 1500℃ and forming continuous fibers with golden brown color. It is known as a pollution-free green industry raw material in the 21 century. Typically, the "basalt" in CBFs is a generic term for igneous rocks that can be used to produce continuous fibers, including basalt, andesite, dolerite, pyroxene, andesitic basalt, etc. Due to its excellent mechanical propertiesand durability, the CBF is one of the four high-tech fibers (carbon fibers, aramid fibers, high molecular weight polyethylene fibers and continuous basalt fibers) in China. Although the development of CBF is late among all the high-tech fibers, it is still prized due to its high cost performance and wide applications. In recent years, the production and application technology has been rapidly developed. However, because of many technical bottlenecks existing in production, there are many problems that restrict the development of CBF, such as big divergence in performance, small production capacity, high production cost, backward production equipment, etc. Moreover, as the development of wind power, automobile, aircraft, boat and civil construction, there are growing demand for high performance fiber-reinforced composite materialsand stable production source of corrosion resistant high-strength CBF. In regard of the existing problems in the quality and performance stability and the demand for high-strength CBF in the application fields, in this thesis, the technical method and related theoretical analysis are achieved to improve the stability and strength of CBF by studying the melting mechanism and mixing method of the basalts. The main research contents and the innovation points are listed below: (1) First, the melting process was investigated for andesite, andesitic basalt, tholeiite, and alkali basalt(generally called basalt) through high temperature microscopic analysis, differential scanning calorimetry (DSC) and X-ray diffraction (XRD), and was further explained by mineral phase diagram. The effect of the chemical composition and the mineral components on the melting temperature (melting process) is systematically analyzed, the optimized heat reaction and melting process are established, and mechanism of the melting process is proposed. These results are the essential theoretical basis for the CBF production technology of stability and high performance. Meanwhile, based on the mineral components, the melting process and melting mechanism, the factors that affect melt homogeneity are examined, and it is proposed to improve the homogenization of basalt melt by avoiding infusible mineral components and optimizing the melting temperature. Through these studies, the stability problem of the CBF is fundamentally solved. (2)Because the basalt is a natural ore, its components are fixed for a certain region. So it is different with the glass batch, in which the type or content of the chemical composition can be adjusted to reach certain requirement of fiber performance. However, the basalt components vary with different regions, so there must be a single type natural basalt corresponding to different requirements for fiber performance. In the thesis, single natural basalt ores are first studied to determine the factors affecting the tensile strength of CBF. The effect of the chemical composition and mineral component on the tensile strength, melting properties (melting temperature and viscosity) and fiber forming properties (crystallization temperature and fiber-forming temperature range), and the effect of melting properties (melting temperature and viscosity) and fiber forming properties (crystallization temperature and fiber-forming temperature range) on the tensile strength have been investigated for andesite, andesitic basalt, and tholeiite. The results show that, for the homogeneous basalt melt, the tensile strength of CBF is determined by the chemical composition(mainly by the SiO2 content). The mineral components of basalts are decisive in the melting properties and fiber forming properties, while the melting properties and fiber forming properties of the basalts are decisive in the homogeneity of the basalt glass melt and further affect the filament tensile strength. The study also reveals that when the weight content of SiO2 is between 50% and 57% (mainly for andesitic basalt and tholeiite), the filament tensile strength of basalt fiber is highest that is 3370.46MPa. In this case, the basalt is easy to melt and homogenize; the hemispheric temperature (melting temperature) is between 1280℃ and 1470℃, the viscosity is between 250dPa﹒s and 650dPa﹒s at 1300℃, the upper limit crystallization temperature is between 1240℃ and 1290℃, and fiber-forming temperature range is -90℃ to 20℃. The study in this thesis provides a specific technique solution to select appropriate basalt ore for high-strength CBFs production. (3)Mixing technique is a method to realize the composition stability and performance improvement of natural basalt ores by crushing, preblending and granularity/distribution controlling for different regions or mineral occurrences. In this thesis, two types of individual basalts are mixed to improve the filament tensile strength of CBF. The high SiO2 content basalt was added into the low SiO2 content basaltto form basalt mixture; the tensile strength, melting properties (melting temperature and viscosity), fiber forming properties (crystallization temperature, fiber-forming temperature range), and their relationship are investigated.Compared to the CBFs of individual basalt, whether the SiO2 content of basalt mixtures is more, close to or less than that of individual basalts, the filament tensile strength of basalt mixtures is always higher. Moreover, the melting properties and the fiber-forming properties are optimized. This is because that the change of mineral component in basalt mixtures facilitates the optimization of the melting properties and the fiber-forming properties, further the homogeneity of glass melt, and then the improvement of the tensile strength of CBFs. (4) The tensile strength of CBFs is dependent on the chemical composition, mineral component, melting properties (melting temperature and viscosity) and fiber forming properties (crystallization temperature, fiber-forming temperature range). Among them, chemical composition and mineral component are the internal factors that affect the tensile strength, while the melting properties (melting temperature and viscosity) and fiber forming properties (crystallization temperature, fiber-forming temperature range) are the external factors. In the case of sufficient homogeneity of the basalt glass melt, the tensile strength of CBFs is dependent on both the chemical composition and the mineral component; otherwise, it is dependent on the mineral component, because the mineral component affect the melting properties (melting temperature and viscosity) and fiber forming properties (crystallization temperature, fiber-forming temperature range) which determine the homogeneity of the basalt glass melt. It can be revealed from the study in the thesis that, no matter for the CBFs of individual basalt or for the CBFs of basalt mixtures, the SiO2 content is 50%-57% for the highest filament tensile strength, because the homogeneity of the basalt glass melt is good and the tensile strength is determined by chemical composition and the mineral component. When the SiO2 content is more than 57%, the homogeneity of the basalt glass melt is bad, so the tensile strength of CBFs is mainly determined by the melting properties; when the SiO2 content is less than 50%, the homogeneity of the basalt glass melt is also bad, and the tensile strength of CBFs is mainly determined by the fiber-forming properties.
学术讨论
主办单位时间地点报告人报告主题
城市工程科学技术研究院 2011.12.06 逸夫建筑馆7楼707会议室 刘嘉麒 我国玄武岩纤维材料的发展态势与前景
城市工程科学技术研究院 2013.5.07 逸夫建筑馆7楼707会议室 汪洋 耐碱玄武岩纤维研究进展
玄武岩纤维生产及应用技术国家地方联合工程研究中心 2015.6.16 紫金(建邺)科技创业特别社区先导区2栋4楼会议室 David Hui Advancement of Structural with Basalt Fiber Reinforced Polymers
玄武岩纤维生产及应用技术国家地方联合工程研究中心 2016.5.25 紫金(建邺)科技创业特别社区先导区2栋4楼会议室 雷亮 耐高温玄武岩纤维研究进展
东南大学材料学院 2011.10.25 材料A楼401会议室 陈兴芬 Advanced High Technology Material – Continuous Basalt Fibe
玄武岩纤维生产及应用技术国家地方联合工程研究中心 2013.5.15 逸夫建筑馆7楼707会议室 陈兴芬 玄武岩多元均配混配技术
玄武岩纤维生产及应用技术国家地方联合工程研究中心 2014.6.8 紫金(建邺)科技创业特别社区先导区2栋4楼会议室 陈兴芬 玄武岩熔制机理研究
玄武岩纤维生产及应用技术国家地方联合工程研究中心 2015.9.15 紫金(建邺)科技创业特别社区先导区2栋4楼会议室 陈兴芬 天然单组份玄武岩纤维的高强度化研究
玄武岩纤维生产及应用技术国家地方联合工程研究中心 2016.5.11 紫金(建邺)科技创业特别社区先导区2栋4楼会议室 陈兴芬 混合玄武岩纤维的高强度化研究
     
学术会议
会议名称时间地点本人报告本人报告题目
24th International Conference on Composites/Nano Engineering 2016.6.17-23 海南,海口 Development of High Strength Basalt Fiber
The 12th China-Japan Joint Conference on Composite Materials 2016.9.14-18 Kochi, Japan Development of high strength of continuous basalt fiber by mixing basalts
     
代表作
论文名称
Study of melting properties of basalt based on their mineral components
Improving the Tensile Strength of Continuous Basalt Fiber by Mixing Basalts
 
答辩委员会组成信息
姓名职称导师类别工作单位是否主席备注
咸贵军 正高 教授 博导 哈尔滨工业大学
王玉梅 正高 教授级高工 其他 南京玻璃纤维研究设计院有限公司
吴智仁 正高 研究员 博导 江苏大学
蒋金洋 正高 教授 博导 东南大学
李敏 正高 教授 博导 东南大学
汪昕 正高 教授 博导 东南大学
      
答辩秘书信息
姓名职称工作单位备注
刘建勋 副高 副研究员 东南大学