返回
类型 基础研究 预答辩日期 2018-03-09
开始(开题)日期 2016-10-28 论文结束日期 2017-12-21
地点 逸夫科技馆3楼会议室 论文选题来源 其他项目    论文字数 5.7 (万字)
题目 MODIFICATION AND BIOMEDICAL APPLICATIONS OF NANO-STRUCTURAL BUTTERFLY WINGS
主题词 生物源,光子晶体,蝴蝶翅膀
摘要 具有有序微纳结构色的材料广泛存在于自然界中,随着生物源的微结构材料及仿生结构材料的研究的推进,对生物源的结构的机理的认识和复制变得越来越重要。天然有序结构(包括昆虫翅膀,羽毛,叶表皮,壳等),由于其新颖的结构和独特的光学性质,已经实现了各种各样应用,包括生化检测,光学传感,储能,组织工程等。此外基于生物源的有序结构材料制作的生物传感器在灵敏度,稳定性,安全性,小型化,便携性等方面具有明显的优势。基于有序微结构的传感研究已成为分析检测领域的研究重点,其高度有序的微结构具有很好的结构性能和光学特性,有利于传感器的小型化和集成化等。其中,基于典型的天然有序结构——大蓝闪蝶的相关研究已经得到广泛的应用。由于大蓝闪蝶具有明亮的结构色和有序的鳞片结构,目前已经报道了很多基于这种蝶翅的研究与应用,例如,基于表面有序结构定向排列的表面润湿性研究;基于表面极性不同而制作的气体传感和基于表面微结构热响应性而制作的温度传感器等。但是,很少有报道利用其结构和光学性质来进行荧光增强,用于生物检测与分析。 在本论文中,我们首先讨论了生物源材料的结构的多样性,我们将这些材料来来源进行分类:分为动物源、植物源等以及对材料的结构进行分类:层状结构、多孔结构、螺旋结构等。除此之外,我们还讨论了这些结构给材料带来的独特性质,如超疏水性,粘附性和高强度等,并且讨论生物源材料目前在生物医学领域如组织工程和生物传感器中的应用。基于目前已有的一些研究成果我们选用蝴蝶翅膀作为研究对象,研究了其在细胞调控、诱导生长和可穿戴生物传感器的应用,主要研究成果如下: 1)利用天然各向异性纳米结构的蝴蝶翅膀(Morpho menelaus,Papilio ulysses telegonus和Ornithoptera croesus lydius)开发了一种简单、环境友好的方法来诱导细胞定向生长。提出了两步化学处理蝶翅使其更适于细胞培养。此外,calcein乙酰氧基甲基酯(Calcein-AM)染色和Methylthiazolyldiphenyl-tetrazolium溴化物(MTT)测定结果表明NIH-3T3成纤维细胞在这些蝴蝶翅膀上可以很好的生长。此外,这些细胞生长过程中呈现出与蝶翅表面鳞片条纹结构同向生长的特点。这表明蝶翅表面的微结构对细胞的生长产生了诱导作用。 2)我们利用蝶翅设计了一个肝细胞生长和聚集体形成的三维模型,基于蝴蝶翅膀衍生的天然各向异性纳米结构维持肝细胞的功能。我们以简单,廉价和绿色的方法预先引入的这些底物和在这些底物上培养的NIH-3T3成纤维细胞显示出沿着蝶翅的脊状的方向的排列,最终形成肝脏聚集体。我们预计这些天然的,可生物降解的和生物相容性的底物在肝培养模型中具有潜在的应用,并且可以应用到再生组织的发育中。 3)我们构建了一种以生物源的有序结构——大蓝闪蝶蝶翅为基底的微流体/微电子集成柔性贴片。这种贴片片同时结合了生物源的有序结构和自组装光子晶体层来增强标记物的荧光信号,用于提高免疫分析的灵敏度,可同时检测多种生物标记物,同时通过在条纹结构上刮涂石墨烯等碳材料构建微电子电路来实现细微运动的监测,这种生物源的贴片制备方法简单,原料来源广泛,可同实现快速多元检测,促进了有序结构在POCT技术中的应用,可以广泛应用于生物分析、临床检测、运动检测等领域。
英文题目 MODIFICATION AND BIOMEDICAL APPLICATIONS OF NANO-STRUCTURAL BUTTERFLY WINGS
英文主题词 anisotropic nanostructures, butterfly wings, Morpho menelaus, cell regulation, HepG2, NIH-3T3, wearable biosensor
英文摘要 Anisotropic natural nanostructures occurring in the several organisms in nature possessing structural color have gained more and more attention because of its obvious advantages in sensitivity, stability, security, miniaturization, portability, online use and remote monitoring. Due to the development of research on nature-inspired bionic structures, as well as demand for high-efficient low-cost microfabrication techniques, understanding and replicating the mechanism of structural coloration have become increasingly significant. These sophisticated structures have many unique functions and can be used for many applications. Many sensors have been proposed based on their novel structure and unique optical properties. A lot of these bio-inspired sensors for infrared radiation/thermal, pH, vapor etc. have been discussed in detail, with intense focus on several biomedical applications, anyway there still a lot of application yet to be discovered. In thesis review, we will describe these nanostructure materials based on their sources in nature and the varieties of their structure, as layered, hierarchical, helical structures and so on. Beside we discuss the functions endowed by these structures, such as superamphiphobic, adhesion, and high-strength, etc., and have been put them into number of applications in biomedical fields, which involve in cell cultivation, biosensors and tissue engineering. This research mainly focuses on the anisotropic nanostructures of butterfly wings biomedical application in cell regulating and wearable biosensor, and the main achievements are summarized as follows: 1) A simple and green method was developed by utilizing butterfly wings (Morpho menelaus, Papilio ulysses telegonus and Ornithoptera croesus lydius) with natural anisotropic nanostructures to generate cell alignment. A two-step chemical treatment was proposed to achieve more hydrophilic butterfly wings preceding cell culturing. Furthermore, calcein acetoxymethyl ester (Calcein-AM) staining and Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay results demonstrated the appropriate viability of NIH-3T3 fibroblast cells on those butterfly wings. Moreover, the cells displayed a high degree of alignment in each specimen of these wings. We anticipate that those originating from natural butterfly wings will pose important applications for tissue engineering. 2) We describe a good 3D model for the hepatocyte growth and aggregate formation with maintaining the function of the hepatocytes based on the natural anisotropic nanostructures derivate from butterfly wings. These substrates which previously introduced by us in a simple, inexpensive and green method and NIH-3T3 fibroblast cells cultured on these substrates was shown a high degree of alignment along the direction of the ridges, here these natural substrates show an important role in the final tissue model or cell aggregates of hepatocyte as well. We anticipate that these natural, biodegradable and biocompatible substrates maintain a hepatic culture model in a potential therapeutic application and can participate in future development of regenerative tissues. 3) Motivated by Morpho menelaus wing unique structures and extraordinary functionalities of its ordered structures, biosensor based on butterfly wings was presented. Flexible Morpho menelaus-based wearable sensors were integrated with a microfluidic system and electronic networks to facilitate the diagnosis of neurodegenerative disease (ND). In the microfluidic section, the structural characteristics of the Morpho menelaus wings up layer were combined with SiO2 nanoparticles to form a heterostructure, the fluorescent enhancement property of the heterostructure is used to increase the fluorescent intensity for multiplex detection of two proteins: IgG and AD7c-NTP. For the electronic section, conductive ink was blade-coated on the under layer of wing for measuring resistance change rate to obtain the frequency of static tremors of ND patients. The disposable Morpho menelaus-based flexible microfluidic and electronic sensor enables biochemical–physiological hybrid monitoring of ND. The sensor is also amenable to a variety of applications, such as comprehensive personal healthcare and human–machine interaction.
学术讨论
主办单位时间地点报告人报告主题
东南大学 2013.5.7 逸夫科技馆 艾巴滋 Mimicry of Cell Environments-in vitro- on the Natural scaffolds
东南大学 2014.7.17 逸夫科技馆 艾巴滋 Natural material scaffolds for mimicking the cell microenvironment
东南大学 2015.12.7 逸夫科技馆 艾巴滋 MICROFLUIDIC DEVICES IN NANOTECHNOLOGY -Tissue Engineering
东南大学 2013.12.16 逸夫科技馆 艾巴滋 Cell Culture on Three Dimensional Natural Scaffolds for Tissue Engineering
东南大学 2015.7.19 逸夫科技馆 艾巴滋 New methods for in vitro and in vivo assays of endogenous free radicals
东南大学 2017.12.20 逸夫科技馆 艾巴滋 BIOMEDICAL APPLICATIONS OF NANO-STRUCTURAL NATURAL
东南大学 2016.9.29 逸夫科技馆 艾巴滋 Nanostructural natural materials for regulating cell adhesion and orientation
     
学术会议
会议名称时间地点本人报告本人报告题目
International conference on Self-assembled Functional Materials (2013 ICSFM) 2013.7.5-7.7 Nanjing New methods for in vitro and in vivo assays of endogenous free radicals
第六届生物分析、生物医学工程与纳米技术国际会议 (湖南大学) 2014.5.29-5.30 湖南长沙 MICROFLUIDIC DEVICES IN NANOTECHNOLOGY -Tissue Engineering
2015年中国生物医学工程联合学术年会(东南大学) 2015.10.16-10.19 江苏南京
     
代表作
论文名称
Chitin-Based Anisotropic Nanostructures of Butterfly Wings for Regulating Cells Orientation
 
答辩委员会组成信息
姓名职称导师类别工作单位是否主席备注
张海黔 正高 教授 博导 南京航空航天大学 主席
邓大伟 正高 教授 博导 中国药科大学 委员
钱卫平 正高 教授 博导 东南大学 委员
付德刚 正高 教授 博导 东南大学 委员
赵祥伟 正高 博导 东南大学 委员
      
答辩秘书信息
姓名职称工作单位备注
魏红梅 副高 高级实验员 东南大学