返回
类型 应用研究 预答辩日期 2017-09-22
开始(开题)日期 2014-05-28 论文结束日期 2017-06-17
地点 *** 论文选题来源 中央、国家各部门项目     论文字数 6 (万字)
题目 XXXX微波真空电子器件XXXX寿命技术研究
主题词 XXXX电子器件,渗气模型,残余气体测试,剩余寿命评估,加速寿命试验
摘要 微波真空电子器件(VED)是XX装备中的核心元部件。XX VED出厂后装备在XX系统中,使用前长期处于存储状态,其XX寿命会影响到整个系统可靠性。论文在回顾和总结了XXXXXX电子器件(器件)XX寿命技术研究现状的基础上,确定了主要研究目标及方向,围绕影响器件XX寿命的关键问题,重点研究器件管内状态变化机理、管内残余气体检测、加速XX寿命检测方法、XX寿命评估等技术。 根据器件实际XX环境,基于竞争吸附理论,提出并建立了器件混合气体渗透率模型,依据已验证的试验数据确定了模型参数。基于有限元法和该模型,可对复杂结构器件渗气数值分析,针对某样管验证了数值分析结果的正确性。针对仅考虑渗气的某器件,采用该模型与已公开的基本、修正渗透率模型对比分析,得到该管预期XX寿命分别为>50年、1小时、609天。结果表明,所提模型适合分析渗气对器件内环境影响。所提模型用于分析XXXX核心元部件用硼硅酸盐、单晶硅玻璃密封后,分别置于纯氮、氦气和空气中的气体渗透状况。结果表明,置于氦气和空气中XX时,该元部件内真空度低于阈值的时间均低于预期XX寿命;置于氮气中XX时,气体渗透最小,可避免器件失效。 提出了基于瑞利散射非接触式器件管内真空度测试方法。分析了气体种类和浓度、散射角等因素对散射光影响,结果表明大气体分子、大浓度,小散射角、宽脉冲均可提高散射光强度,降低测试难度。分析了大气散射、镜面反射和金属反射对散射光测试的影响,结果表明前两者将淹没残余气体散射光,必须隔离。设计并研制了具有大气散射、镜面反射光隔离器以及带观察窗的器件,研制了散射光接受子系统,搭建了器件残余气体散射光测试平台。分别对某器件出厂后、XX后进行测试试验,分析了实测脉冲重复频率、测试角度、测试距离和入射光强度对散射光强度影响。试验结果表明,XXX年后器件残余气体散射光强度比出厂时高约XXX倍,管内残余气体量增至XXXXXPa。分析了器件失效机理,确定以空气压力作为XX寿命的加速应力,根据加速应力与加速寿命之间关系,给出基于加压的器件XX寿命加速模型。 分析了器件失效机理,确定以空气压力作为XX寿命的加速应力,根据加速应力与加速寿命之间关系,给出基于加压的器件XX寿命加速模型。建立了基于贝叶斯理论的器件剩余寿命预测模型,根据后验概率修正了器件离子流劣化速度参数,调整贝叶斯公式中的参数,增加了结果准确性。建立了基于分段相似性对比的剩余寿命预测模型,将较待测与参考器件性能数据按维护时间分段进行比较相似性,再加权平均获得待测器件剩余寿命。 研制了以压力为加速应力的器件加速寿命试验平台,实现对XX加速的控制、检测和记录。基于该平台以XX个大气压对某XXXX管进行XX试验,发现正常、加速XX条件下此管阴极电流衰减速度不同,加速XX后阴极电流衰减更快。由此分析知该管正常XX寿命为XX年,而加压XX寿命为XX年,证明了加压XX寿命试验方法有效性。基于已提出的两种器件剩余寿命预测模型,分析XXXX所提供的XX只XXXX管长期跟踪监测数据,由贝叶斯存储剩余寿命预测模型得每只器件XXX劣化速率,从而知该批管XXXXXXXXXXXXXXX。由分段相似性模型分析其中已失效X只存储管剩余寿命误差,发现XXXXXX取XX、XXXXXX取XX时,平均预测误差最低。
英文题目 XXXX Life Technology of XXXX Microwave Vacuum Electronic Devices
英文主题词 xxxx vacuum electronic devices,permeation model, residual gas measurement, residual life prediction, accelerated life test
英文摘要 Microwave vacuum electronic devices (VEDs) are the core components of xxxx equipment. The xxxx xxxx VEDs (xxxx devices) are equipped in the xxxx xxxx system, and xxxx in the xxxx state for a long time before use. So, their xxxx life will affect the reliability of the whole system. This paper reviews and summaries the status of xxxx life for the xxxx devices. Focusing on the key issues affecting the xxxx life of xxxx devices, the mechanism of state changes and the residual gas measurement inside the xxxx devices, the acceleration test method for their xxxx life and the xxxx life evaluation technology are explored in depth. According to the xxxx environment of the xxxx devices, based on the competitive adsorption theory, the permeability model of mixed gas inside the xxxx devices is proposed and established. The model parameters are determined by the validated experimental data. Based on the finite element method and the model, the numerical analysis of the permeability in the complex structure xxxx devices can be carried out, and the correctness of the numerical analysis is verified for the actual device. For the device considering only permeation, the model is compared with the published basic and modified permeability models, and the expected xxxx life of the device is given as > 50 years, 1 hour and 609 days, respectively. The results show that the proposed model is suitable for analyzing the influence of permeation on the xxxx tube environment. The model is applied to analyze the gas permeation rate of the core component in a spaceflight unit, which is xxxx in pure nitrogen, helium and air, respectively, after sealed by borosilicate and single crystal silicon glass. The results show that the time is lower than expected storage life (12 year) when the vacuum inside the component xxxx in helium and air is lower than the threshold; the gas permeability inside the component stored in nitrogen is minimum, which failure can be avoided. We proposed a non-contact residual gas test method based on Rayleigh scattering. And we made an analysis of the effects of residual gas type, concentration and scattering angle on the scattered light intensity. It was found that large gas molecules, small scattering angles and wide pulses can improve the scattered light intensity and reduce the difficulty of testing. The effect of air-scatter light, mirror and metal reflected light on the scattered light test is analyzed. It is found that the air-scatter light and mirror reflected light will submerge residual gas scattered light, so they must be isolated. We designed a xxxx tube with ambient light isolators and viewing windows, and developed a scattering light receiving subsystem, and set up a residual gas change test platform based on UV excimer laser. Then we analyzed effect of the measured pulse repetition frequency, test angle, test distance and incident light intensity on the scattered light intensity. Based on the test platform, we test the residual gas scatter light three times respectively, when the xxxx tube was manufactured, xxxx for xxxx years. The results showed that the residual gas scatter light intensity raised about xxxx times higher than intensity when the xxxx tube was manufactured, it implied that the residual gas rised to xxxx Pa. After analyzing the xxxx tube failure mechanism, we chose air pressure as the acceleration stress for the xxxx tube, and then established a xxxx life acceleration model based on pressurization. After then we established a remaining storage life prediction model for xxxx life based on Bayesian theory, and modified the parameters of the ion flow degradation rate of the xxxx tube according to the posterior probability, and adjusted the Bayesian parameters to increase the accuracy of the results. After then we presented another remaining xxxx life prediction model based on the segmented similarity comparison, which compare the similarity between the test xxxx tube and the reference storage tube performance data according to the maintenance time segment, then obtained the xxxx tube remaining life by weighted average. We developed a xxxx tube accelerated life test platform using pressure as accelerated stress, and realized the function of the xxxx acceleration control, detection and recording. Based on the platform, one xxxx klystron was xxxx under xxxx atm. It is found that the cathode current dropped faster under accelerated xxxx. So the xxxx life of this klystron was xxxx years and the acceleration xxxx life was xxxx years, and it proved the validity of the xxxx life acceleration model based on pressurization. Based on the two remaining storage life prediction model, we analyzed the long-term monitoring data of 59 xxxx xxxx tube provided by the CEC 12th research institution. The flow degradation rate of each xxxx tube was calculated based on the Bayesian xxxx residual life prediction model, and it’s found that the xxxx life reliability of xxxx years was xxxx. After analyzing the residual xxxx life prediction error of the three storage tubes, it’s found that the average prediction error reached the minimum when the xxxx was xxxx and the xxxx was xxxx.
学术讨论
主办单位时间地点报告人报告主题
东南大学光传感/通信综合网络国家地方联合工程研究中心 2012.04 金陵院 袁慧宇 速调管气体分析
东南大学光传感/通信综合网络国家地方联合工程研究中心 2012.06 金陵院 袁慧宇 A Fast Exhaust-Gas Analyzer for the ITER Fusion Experiment Divertor
东南大学光传感/通信综合网络国家地方联合工程研究中心 2012.06 金陵院 袁慧宇 Results on Gas Detection and ConcentrationEstimation Via Mid-IR-Based GasDetection System Analysis Model
东南大学光传感/通信综合网络国家地方联合工程研究中心 2013.03 金陵院 袁慧宇 A new method of scattering-angle scanning for optical beating light scattering spectroscopy.
东南大学光传感/通信综合网络国家地方联合工程研究中心 2014.03 金陵院 孙小菡 PW2014参会总结
东南大学光传感/通信综合网络国家地方联合工程研究中心 2014.05 榴园新华厅 B. M. A. Rahman Finite element method modeling for photonics
东南大学光传感/通信综合网络国家地方联合工程研究中心 2015.06 金陵院 Zhaowei Liu Using metamaterials & plasmonics to control light
东南大学光传感/通信综合网络国家地方联合工程研究中心 2016.05 金陵院 Patrick Degenaar Biomedical implants: progress and prospects
     
学术会议
会议名称时间地点本人报告本人报告题目
中国电子学会 2013.08 中国 黄山 存储态真空电子器件渗气分析
IEEE Electron Devices Society 2016.04 美国 蒙特雷 Measurement Experiment of Residual Gas inside Vacuum Electronic Devices Based on Rayleigh Scattering
中国电子学会 2016.08 中国 厦门 基于加压的存储态真空电子器件加速寿命方法
     
代表作
论文名称
Rayleigh scattering measurement of residual gas inside microwave vacuum electronic devices
Mixture Gas Permeation Model for Stored VED
Measurement Experiment of Residual Gas inside Vacuum Electronic Devices Based on Rayleigh Scattering
 
答辩委员会组成信息
姓名职称导师类别工作单位是否主席备注
闫铁昌 正高 教授 博导 中电科技集团第12所
苏小保 正高 研究员 博导 中科院电子所
万遂人 正高 教授 博导 东南大学
赵兴群 正高 教授 硕导 东南大学
肖金标 正高 教授 博导 东南大学
      
答辩秘书信息
姓名职称工作单位备注
沈长圣 其他 讲师 东南大学