返回
类型 基础研究 预答辩日期 2018-01-23
开始(开题)日期 2015-12-18 论文结束日期 2017-11-14
地点 动力楼316 论文选题来源 国家自然科学基金项目     论文字数 8.5 (万字)
题目 电动汽车混合励磁容错电机及其驱动控制研究
主题词 混合励磁电机,容错设计,无刷谐波励磁,容错控制,无位置传感器控制
摘要 随着能源危机和环境污染的日益凸显,电动汽车作为有效解决方案受到越来越多的关注。电机及其驱动系统是电动汽车的关键部件,电机及其驱动系统的可靠和容错性直接关系到驾乘人员的生命安全。转子永磁型内嵌式永磁电机因具有高功率密度、高效率和宽调速范围的优点,在电动汽车中得到了广泛应用。因此,提高转子永磁型内嵌式永磁电机及其驱动系统的容错性能是电动汽车领域的研究热点。 本文基于无刷谐波励磁技术,提出了一种五相无刷混合励磁容错(brushless fault-tolerant hybrid-excitation, BFTHE)电机。通过多相设计,在“V型”永磁电机中引入单层集中绕组,采用隔齿绕制的方式,实现了各相绕组的相间隔离,提高了电机的容错性能。通过气隙磁场的有效调节,满足了电动汽车对驱动电机宽调速的要求。五相BFTHE电机只存在径向磁场,无需电刷和和滑环,解决了现有的转子永磁型混合励磁电机无法同时实现电机结构简单与无刷化的问题,提高了电机的可靠性,并具有较强的容错性能,适合电动汽车的应用。 电机驱动系统除电机本体外,控制器和传感器也是重要组成部分,每一部分的故障都将影响电机系统的正常工作,甚至导致整个系统的瘫痪和安全事故的发生。电机驱动系统中的位置传感器也是易于发生故障的部件,机械传感器的使用降低了整车系统的可靠性和鲁棒性。本文针对电机驱动系统中的电机、控制器和传感器进行统筹考虑,开展了电机本体可靠性设计、电机绕组故障的容错控制策略和位置传感器故障的容错控制策略的研究,以提高电动汽车驱动电机系统的可靠性。全文主要内容如下: 基于五相BFTHE电机的基本结构和工作原理,开展了在电机设计方面的研究工作。推导了五相BFTHE电机的功率尺寸方程,设计了一台2 kW样机,包括电机容错设计、永磁体尺寸设计和谐波励磁装置设计等。运用不均匀气隙和不等齿宽技术,对电机反电势和输出转矩进行优化设计。应用有限元软件,对五相BFTHE电机的磁场分布、径向气隙磁密波形、空载反电势、齿槽转矩和输出转矩等电磁性能进行了仿真分析,着重分析了电机的磁场调节性能、效率特性以及容错性能。并且,研制了一台五相BFTHE电机的试验样机,开展了样机的反电势、齿槽转矩、磁场调节能力、效率和容错能力的测试试验。 开展了五相BFTHE电机直接转矩控制方面的研究工作。依据五相BFTHE电机的结构特点和工作原理,建立了电机的数学模型。针对五相BFTHE电机基频以下的运行工况,在基频以下采用基于SVPWM的直接转矩控制(SVM-DTC)策略,以实现电机控制系统的良好动静态特性和强鲁棒性。同时为通过对五相BFTHE电机的励磁电流控制以实现磁场的有效调节,针对电机基频以上的运行工况,研究了基于谐波注入的弱磁直接转矩控制策略。通过仿真和实验验证了SVPWM直接转矩控制策略和基于谐波注入的弱磁直接转矩控制策略的有效性。 开展了五相BFTHE电机缺相故障时容错控制方面的研究工作。针对SVPWM直接转矩控制系统,发生电机绕组一相开路故障时,通过对电机故障后的空间电压进行矢量重构,提出了类三相SVPWM容错控制算法,实现了基于SVPWM的快速容错控制。该容错策略解决了现有的基于滞环比较调节PWM容错控制中转矩脉动大、逆变器开关损耗大等问题,并且能够实现在保持故障后转矩的平均值不下降的同时抑制转矩脉动。 开展了五相BFTHE电机无位置传感器控制方面的研究工作。针对五相BFTHE电机的中高速运行工况,提出了一种宽转速强鲁棒性SMO的无位置传感器控制算法,采用sigmoid函数代替开关函数,在一定程度上削弱系统的抖振;采用反电势观测器以获得反电势,解决了传统SMO中由于低通滤波器带来的相位延迟的问题;运用了反电势反馈增益系数的自适应算法,通过该系数的自适应调节提高了转子位置估算的精确度;增加扰动解耦传感器和状态反馈增益,大大提高了系统的鲁棒性,包括抗故障扰动能力、抗电机参数变化扰动能力和抗负载变化扰动能力。针对宽转速强鲁棒性SMO的零低速运行存在的问题,研究了一种脉冲转矩注入的无位置传感器控制算法,并将脉冲转矩注入法和宽转速强鲁棒性SMO算法相结合,实现了包括零速在内的全转速范围的转子位置自检测。 搭建了基于dSPACE的五相BFTHE电机驱动系统实验平台,设计了硬件电路,介绍了控制系统软件流程,为五相BFTHE电机直接转矩控制、容错控制和无位置传感器控制实验验证提供了硬件和软件基础。
英文题目 RESEARCH ON FAULT-TOLERANT HYBRID-EXCITATION MATOR AND ITS CONTROL SYSTEM FOR ELECTRIC VEHICLES
英文主题词 hybrid-excitation motor, fault-tolerant design, brushless harmonic excitation, fault-tolerant control strategy, sensorless control
英文摘要 With the increasing concern of energy crisis and environmental pollution, electric vehicles (EVs) have been paid much attention as the effective solution. As the motor drive system is the key part of the EVs, its reliable operation directly relates to the personal safety. Due to the advantages of high torque density, high efficiency and wide speed range, the interior permanent magnet (IPM) motors with rotor PM have been widely used in EVs. Therefore, enhancing the fault-tolerant capacity of IPM motors with rotor PM has been the research focus of automotive area. Based on the technology of brushless harmonic excitation, a new five-phase brushless fault-tolerant hybrid-excitation (BFTHE) motor is proposed in this thesis. To improve the reliability and fault-tolerant capacity of motor drive system, multi-phase and single-layer concentrated winding are introduced in the design of V-type IPM motor. Then, the fault-tolerant capacity can be enhanced by the phase separation of the phase windings. In addition, by the effective regulation of air-gap flux, the wide speed regulation of the driving motor for EVs can be realized. This motor can obtain the following performance: high efficiency, high power density, high fault-tolerance, good flux-adjusting capability, as well as keeping a balance between simple structure and no sliding contacts, which makes this five-phase BFTHE motor a promising candidate for the application of EVs. Apart from the motor ontology, the controller and sensor are also the important part of motor drive system. The fault of each part will influence the normal operation of the whole system. Also, the position sensor in the motor drive system is a part which is prone to fault. At the same time, due to the installation of mechanical sensor, the complexity of EVs will be increased and the reliability and robustness of the vehicle system will be reduced. Therefore, apart from the investigation of motor’s reliability from the perspective of motor design, the fault-tolerant control strategies of motor and position sensor have been studied in this thesis. To enhance the reliability of motor drive system for EVs, the drive motor, the controller and the position sensor are taken into full account in this thesis. The organization of this thesis is as follows: Based on the structure and operating principle of the five-phase BFTHE motor, the motor design is studied. The power size equation of the five-phase BFTHE motor is derived. A prototype with 2 kW is preliminarily designed, including the design of motor’s fault-tolerance, structure and size of permanent magnet, and the system of harmonic excitation. Also, the asymmetric airgap and the unequal tooth width are applied to improve the back-EMFs and the output torque. Furthermore, the electromagnetic performances of the five-phase BFTHE motor are analyzed based on the finite element method, including magnetic field distribution, radial airgap flux density, cogging torque and output torque. And the performances of flux-regulation, efficiency and fault-tolerance are emphatically analyzed. Then an experimental prototype of the five-phase BFTHE motor is manufactured. And the test experiments of the back-EMFs, cogging torque, flux-regulation capacity, efficiency and fault-tolerance are carried out. The direct torque control (DTC) of the five-phase BFTHE motor is described. First, the mathematic model of the five-phase BFTHE motor is established based on its structural characteristics and working principle. When the five-phase BFTHE motor runs below the based frequency, the SVPWM based DTC (SVM-DTC) strategy is employed to achieve good dynamic and static performances and strong robustness. When the five-phase BFTHE motor runs above the based frequency, the flux-weakening DTC scheme based on harmonic current injection is investigated to control the excitation current for realizing the effective regulation of air-gap flux. Both the simulation and experimental results prove the validity of the proposed SVM-DTC strategy and the flux-weakening DTC scheme based on harmonic current injection. The fault-tolerant control of the five-phase BFTHE motor is studied when one phase winding is in open-circuit. When the open-circuit fault happens, an analogous three-phase SVPWM fault-tolerant control scheme is proposed by the utilization of the reconfiguration of voltage vector. Due to the division of six sectors and the reconfiguration of six equal nonzero voltage vectors, the proposed fault-tolerant control strategy is quickly computed and easily realized. Also, the problems of large torque ripples and large switching loss of inverter for the conventional fault-tolerant control strategy can be overcomed. Besides, the average value of torque keeps not dropping, while the torque ripple can be suppressed. The sensorless control of the five-phase BFTHE motor is investigated. For the medium/high speed operation, the sensorless control strategy based on wide-speed strong-robustness sliding mode observer (SMO) is proposed. In this algorithm, the sigmoid function is used to replace the switch function to reduce the system chattering; the back-EMF is obtained by using the back-EMF observer to solve the phase delay problem caused by the low-pass filter in the conventional SMO; the adaptive algorithm of the back-EMF is applied to improve the estimation accuracy under low speed. Furthermore, the disturbance sensor and the active state feedback gain are employed to improve the robustness to motor parameters, fault and load disturbance for the SMO system. Moreover, to overcome the problem of the wide-speed strong-robustness SMO in zero/low speed, the sensorless control method based on pulsating torque injection (PTI) is studied. Additionally, the hybrid method based on wide-speed strong-robustness SMO and PTI is researched to achieve self-sensing position estimation under full-speed region including the zero speed. Finally, based on the real-time dSPACE, the digital drive hardware circuit and control experimental platform of the motor drive system are built, which lay a foundation for verifying the effectiveness of the proposed DTC scheme, fault-tolerant control method and sensorless control strategy.
学术讨论
主办单位时间地点报告人报告主题
东南大学电气工程学院 2015年12月31日 礼东一楼春晖堂 Z. Q. Zhu Novel research on permanent magnet machines and controls
东南大学电气工程学院 2017年3月14日 礼堂二楼报告厅 C. C. Chan Innovation driven global outlook of electric vehicles
东南大学电气工程学院 2017年6月13日 动力楼318 朱建国 Robust Design Optimization Methods for High Quality Producible Electrical Drive Systems
东南大学电气工程学院 2017年7月20日 礼东一楼春晖堂 Thomas M. Jahns Understanding PM machine fault behavior and the impact of excitation on mitigation
东南大学电气工程学院 2014年4月4日 动力楼204 张丽 混合励磁容错电机结构探索
东南大学电气工程学院 2014年11月5日 动力楼204 张丽 混合励磁电机设计
东南大学电气工程学院 2015年12月1日 动力楼204 张丽 混合励磁容错电机系统研究
东南大学电气工程学院 2015年12月14日 动力楼316 张丽 五相混合励磁电机及其驱动系统研究
     
学术会议
会议名称时间地点本人报告本人报告题目
浙江大学 2014年10月20日 杭州 Sensorless DTC of a self-decelerating permanent- magnet wheel motor at full speed range
东南大学 2015年 5月13日 动力楼316 Design and electromagnetic performance analysis of a new five-phase FTFSCW-IPM motor for electric vehicles
     
代表作
论文名称
Design, Analysis, and Sensorless Control of a Self-Decelerating Permanent-Magnet In-Wheel Motor
Design and analysis of a new five-phase brushless hybrid-excitation fault-tolerant motor for electri
Design and analysis of a new six-phase fault-tolerant hybrid-excitation motor for electric vehicles
基于宽速滑模观测器的新型自减速永磁轮毂电机无传感器直接转矩控制
Sensorless DTC of a self-decelerating permanent- magnet wheel motor at full speed range
 
答辩委员会组成信息
姓名职称导师类别工作单位是否主席备注
周波 正高 教授 博导 南京航空航天大学
刘国海 正高 教授 博导 江苏大学
程明 正高 教授 博导 东南大学
花为 正高 教授 博导 东南大学
王政 正高 教授 博导 东南大学
      
答辩秘书信息
姓名职称工作单位备注
王伟 其他 讲师 东南大学